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Benchmarking and Analyzing Bird’s Eye View
Perception Robustness to Corruptions

Shaoyuan Xie, Lingdong Kong, Wenwei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei Liu

Abstract—Recent advancements in bird’s eye view (BEV) representations have shown remarkable promise for in-vehicle 3D
perception. However, while these methods have achieved impressive results on standard benchmarks, their robustness in varied
conditions, crucial for ensuring safe operations, remains insufficiently assessed. In this study, we present RoboBEV, an extensive
benchmark suite designed to evaluate the resilience of BEV algorithms. This suite incorporates eight diverse image corruptions,
namely Brightness, Darkness, Fog, Snow, Motion Blur, Color Quantization, Camera Crash, and Frame Lost, with each corruption
examined over three severity levels. Significantly, our benchmark also considers the impact of complete sensor failures in multimodal
perception models. Through RoboBEV, we rigorously assess 33 state-of-the-art BEV-based models spanning tasks like detection, map
segmentation, depth estimation, and semantic occupancy prediction. Our analyses reveal a noticeable correlation between a model’s
performance on in-distribution datasets and its resilience to out-of-distribution challenges. Interestingly, while the absolute performance
metrics showed consistency, relative performances varied significantly among different models. Our experimental results also underline
the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
Furthermore, we observe that leveraging extensive temporal information significantly bolsters model robustness. The insights gleaned
from this study pave the way for the development of future BEV models that seamlessly combine accuracy with real-world robustness.
The benchmark toolkit and model checkpoints are publicly accessible at: https://github.com/Daniel-xsy/RoboBEV.

Index Terms—3D Object Detection, Bird’s Eye View Segmentation, Semantic Occupancy Prediction, Out-of-Distribution Robustness.
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1 INTRODUCTION

EEP neural network-based 3D perception methods

have registered transformative breakthroughs, ex-
celling in a range of demanding benchmarks [2], [3], [4],
[51, [6], [71, [21], [22], [23], [32]. Among these, camera-centric
methods [2], [3], [4], [5], [6], [7] have surged in popularity
over their LiIDAR-driven counterparts [21], [22], [23], [32],
primarily due to advantages such as reduced deployment
costs, augmented computational efficiency, and the ability
to provide dense semantic insights. Central to many of these
advancements is the bird’s eye view (BEV) representation,
which offers a trio of significant benefits:

o Itfacilitates unified learning from multi-view images.

e Itencourages a physically interpretable methodology
for fusing information across diverse sensors and
temporal instances [33].

e Its output domain aligns seamlessly with several
downstream applications like prediction and plan-
ning, fortifying the performance metrics of BEV-
centric perception frameworks.

However, this blossoming landscape of BEV percep-
tion methodologies is not without its challenges. Despite
their evident prowess, the resilience of these algorithms in
the face of out-of-context or unforeseen scenarios remains
under-examined. This oversight is particularly concerning
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given that many of these algorithms are envisioned to func-
tion in safety-critical realms such as autonomous driving.
Traditionally, the robustness of algorithms can be bifurcated
into adversarial robustness [8], [10], [11], [12], [19], [37], [38]
— which delves into worst-case scenarios — and robustness
under distribution shift [40], [47], [49], [49], [50] that exam-
ines average-case performance, often mirroring real-world
conditions.

While adversarial robustness of 3D perception models
has been studied by some [9], [13], [14], [52], this work
seeks to explore a less-traveled avenue: robustness of BEV-
centric 3D perception systems when subjected to natural,
often unpredictable, corruptions.

In this work, to address the existing knowledge gap,
we present a comprehensive benchmark dubbed RoboBEV.
This benchmark evaluates the robustness of BEV percep-
tions against natural corruptions including exterior environ-
ments, interior sensors, and temporal factors. Specifically,
the exterior environments include various light and weather
conditions, which are simulated by incorporating Brightness,
Dark, Fog, and Snow weathers. Additionally, the inputs may
be corrupted by interior factors caused by sensors, such
as Motion Blur and Color Quant. We further propose two
novel corruptions in temporal space tailored for BEV-based
temporal fusion strategies, namely Camera Crash and Frame
Lost. Moreover, we consider complete sensor failure for
camera-LiDAR fusion models [56], [58], [59] that are trained
on multimodal input. The study involves a comprehensive
investigation of diverse out-of-distribution corruption set-
tings that are highly relevant to real-world autonomous
driving applications.

Leveraging the proposed RoboBEV benchmark, we con-
duct an exhaustive analysis of 33 BEV perception models
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Fig. 1. RoboBEV benchmark designs. The benchmark comprehensively encompasses four distinct BEV perception tasks (detection, segmenta-
tion, occupancy prediction, and depth estimation), four diverse sensor type configurations in between LiDAR, cameras, and joint setups (camera
corruption, camera failure, and LiDAR failure), and an array of eight natural image corruptions (Brightness, Darkness, Fog, Snow, Motion Blur, Color
Quantization, Camera Crash, and Frame Lost), each categorized into three distinct severity levels.

under 8 corruptions across 3 severity levels. The key contri-
butions of this work are summarized as follows:

1) We introduce RoboBEV, a comprehensive bench-
mark for evaluating BEV perception robustness un-
der natural corruptions. Furthermore, we provide
an open-source codebase, accessible through our
repository. Additionally, we make the generated
dataset publicly available, allowing the research
community to replicate and extend our findings.

2)  We conduct extensive experiments to assess the per-
formance of 30 camera-based and 3 camera-LiDAR
fusion-based BEV perception algorithms. These al-
gorithms are evaluated across 8 distinct corruptions,
each applied at 3 different severity levels, for a total
of 4 perception tasks.

3) Our study offers valuable insights through in-depth
analyses of the factors that contribute to superior
robustness under corruption scenarios, which shed
light on future model design. We mainly observe
the following results: (a) the absolute performances
show a strong correlation with the performances
under corruption. However, the relative robust-
ness does not necessarily increase as standard per-
formance improves; (b) pre-training together with
depth-free BEV transformation has great potential

to enhance robustness; (c) utilizing long and rich
temporal information largely helps with robustness.

2 RELATED WORKS
2.1 Camera-based Bird’s Eye View Perception

BEV perception methodologies can be stratified into two
primary branches predicated on the explicitness of their
depth estimation. A segment of the literature, influenced
by LSS [17], such as BEVDet [3], employs an auxiliary depth
estimation branch to facilitate the transformation from per-
spective view to bird’s eye view (PV2BEV). BEVDepth [16]
refines this paradigm, enhancing depth estimation accuracy
using explicit depth data from point clouds. Meanwhile,
BEVerse [41] introduces a multi-task learning framework
that achieves benchmark-setting outcomes. In contrast, an
alternative research trajectory avoids explicit depth esti-
mation. Drawing inspiration from DETR [15], models like
DETR3D [4] and ORA3D [42] encapsulate 3D objects as
queries, leveraging Transformers’ cross-attention mecha-
nisms. Following this, PETR [5] boosts performance by
formulating 3D position-aware representations. Simultane-
ously, BEVFormer [2] and PolarFormer [43] venture into
temporal cross-attention and polar coordinate-based 3D tar-
get predictions, respectively. Taking a leaf out of Sparse
RCNN’s [46] book, SRCN3D [44] and Sparse4D [45] pioneer
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sparse proposals for feature amalgamation. Meanwhile,
SOLOFusion [55] pursues deeper historical data integra-
tion for temporal modeling. In addition to detection, BEV
perception tasks also include map segmentation [18], [64],
multiview depth estimation [60], and semantic occupancy
prediction [61], [62], [65], [67], [68]. While these methodolo-
gies flaunt impressive outcomes on pristine datasets, their
resilience against natural corruptions remains an enigma.

2.2 LiDAR-based 3D Perception

LiDAR, with its precision in capturing spatial relationships
using laser beams, has paved the way for breakthroughs
in 3D perception, central to applications like autonomous
driving. Two primary tasks have gained prominence: 3D
object detection and LiDAR semantic segmentation, both
of which have inherent connections to BEV perception.
In the realm of 3D object detection, the focus has been on
optimally representing LiDAR point cloud data [24]. Point-
based approaches, such as those presented in [78], [79],
[80], [81], shine in preserving the innate geometry of point
clouds, capturing local structures and patterns. Meanwhile,
voxel-based strategies, like [82], [83], [84], convert the irreg-
ular point clouds into structured grids, relying on sparse
convolution techniques [52] to handle non-empty voxels
efficiently. Pillar-based techniques, highlighted by works
like [22], [85], offer a trade-off between detection accu-
racy and computational speed by fine-tuning the vertical
resolution. Additionally, hybrid approaches, such as [56],
[67], merge the strengths of both point and voxel repre-
sentations to derive more enriched features. On the other
hand, semantic segmentation techniques often pivot on the
representation choice. Raw point methods, like [26], [88],
emphasize the direct usage of irregular point clouds, while
range view approaches, showcased in [27], [89], [90], [91],
[97], convert these point clouds into 2D grids. This con-
version aligns closely with BEV perception, transforming
3D data into a top-down perspective, essential for many
applications. Further refining this idea are bird’s eye view
techniques, exemplified by [92], which offer a direct 2D
top-down representation. Voxel-centric methods, such as
[93], maintain the 3D spatial structure, often outperform-
ing other singular modalities. Modern research, like [25],
[28], [29], [30], [94], [95], [96], pushes the boundaries by
exploring the fusion of multiple views, seeking to harness
the complementary strengths of different representations. In
essence, while LiDAR-based 3D perception methodologies,
especially those linked with BEV perception, have exhibited
significant promise, their resilience in real-world conditions
warrants deeper exploration and validation.

2.3 Robustness under Adversarial Attacks

Modern neural networks, while showcasing staggering
capabilities, remain vulnerable to adversarial onslaughts,
where meticulously engineered perturbations in inputs can
precipitate erroneous outputs [8], [11], [12]. The menace
of adversarial examples has been a research epicenter
across various vision domains: classification [8], [11], de-
tection [10], [20], and segmentation [9], [10]. These adver-
sarial stimuli can emerge in both digital domains [8], [11]
and real-world environments [9], [51]. Alarming findings

3

reveal that adversarial examples can cripple 3D perception
systems, flagging potential safety concerns during practical
deployments [9], [13], [14]. While Xie et al. [52] delve into
the adversarial robustness of camera-centric detectors, our
focus pivots towards more pervasive natural corruptions.

2.4 Robustness under Natural Corruptions

Assessing model tenacity against corruptions has bur-
geoned as a pivotal research domain. Several benchmarks,
such as ImageNet-C [40], ObjectNet [50], ImageNetV2 [49],
and more, evaluate the robustness of 2D image classifiers
against an array of corruptions. For instance, ImageNet-C
taints pristine ImageNet samples with simulated anomalies
like compression artifacts and motion blur. On the other
hand, ObjectNet offers a test set abundant in rotation,
background, and viewpoint variances. Hendrycks ef al. [48]
underscore the correlation between synthetic corruption
robustness and enhancements in real-world scenarios. Re-
cently, Some works [66], [69], [70] endeavor to improve
the robustness of 3D perception models. Kong et al. [75],
[76] establish a robustness benchmark for monocular depth
estimation under corruptions. Ren et al. [77] design atomic
corruptions on indoor object-centric point clouds and CAD
models to understand classifiers” robustness. Yet, a void
persists concerning benchmarks for 3D BEV perception
models, which play critical roles in safety-sensitive appli-
cations. While a concurrent study by Zhu et al. [63] ex-
plores a similar landscape, their narrative is predominantly
adversarial-centric. In contrast, our benchmarks, spanning
models, tasks, scenarios, and validation studies, offer a
broader and more comprehensive lens into this domain.

3 BIRD’S EYE VIEW PERCEPTION PRELIMINARIES
3.1 Pre-training

Over the past few years, pre-training has staked its claim
as an invaluable strategy, amplifying the efficiency of com-
puter vision models in diverse tasks. Within the sphere
of camera-driven 3D perception, initializing the ResNet
backbone using FCOS3D [6] weights has become standard
practice. To stabilize the training process, FCOS3D adjusts a
depth weight from 0.2 to 1 during fine-tuning [6]. Another
prevailing approach involves training the VoVNet-V2 [53]
backbone on the DDADI15M [54] dataset, targeting depth
estimation, before fine-tuning it using the nuScenes training
set for detection. Semantically, these pre-training techniques
fall into two categories: semantic and depth pre-training.

3.2 Temporal Fusion

The dynamic landscape of autonomous driving demands
precise velocity estimates of moving entities, a challenge
when relying on singular frame inputs. This accentuates the
importance of temporal cues in fortifying vision systems’
perception capabilities. Prior research has pioneered various
methodologies to harness these temporal cues. For instance,
BEVFormer [2] integrates history data and leverages tem-
poral cross-attention to distill BEV features from multi-
timestamp images. Meanwhile, BEVDet4D [34] appends fea-
tures from antecedent frames to weave in temporal nuances,
and SOLOFusion [55] aims for more inclusive temporal
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Fig. 2. Histograms of pixel distributions for different corruption types. While certain corruptions exhibit minimal shifts in pixel distribution (e.g.,

Motion), it is noteworthy that these alterations predominantly have advers

e effects on the overall performance of perception systems.

TABLE 1
Severity level setups in corruption simulations: Detailed parameters used for generating multi-level corruptions for each corruption type.
Corruption Parameter Easy Moderate Hard
Bright adjustment in HSV space 0.2 0.4 0.5
Dark scale factor 0.5 0.4 0.3
Fog (thickness, smoothness) (2.0, 2.0) (2.5, 1.5) (3.0,1.4)
(mean, std, scale, threshold,

Snow blur radius, blur std, blending ratio) (0.1,0.3,3.0,0.5,10.0,4.0,0.8)  (0.2,0.3,2,0.5,12,4,0.7) (0.55,0.3,4,0.9, 12,8, 0.7)
Motion (radius, sigma) (15, 5) (15, 12) (20, 15)
Quant bit number 5 4 3
Crash number of dropped camera 2 4 5
Frame probability of frame dropping 2/6 4/6 5/6

modeling by merging extensive historical data. However,
the resilience of these sophisticated temporal models under
corrupted conditions remains a territory largely uncharted.

3.3 Camera-LiDAR Fusion

The BEV paradigm streamlines the fusion of features mined
from a variety of input modalities. While some algorithms
focus on crafting BEV representations solely from images,
a notable fraction of the literature, including works like
[56], [57], [59], [711, [72], [73], advocates for a unified BEV
space. This harmonizes features extracted from both images
and point clouds. We delve deep into the performance
of such multi-modal fusion algorithms, especially under
circumstances where images face corruption, yet the LIDAR
mechanism remains pristine. Furthermore, we address a
common scenario where the model is trained using multi-
modal input but deployed on vehicles equipped with only
one of the sensors. To assess robustness, we evaluate the
model’s performance under conditions of complete sensor
failure, where either the camera or LiDAR is missing.

3.4 BEV View Transformation

The body of work in BEV transformation is bifurcated based
on depth estimation techniques. One faction, as exemplified
by [3], [16], [41], [55], embeds a distinct depth-estimation
branch within their systems. Given the inherent challenges
in predicting 3D bounding boxes from singular images,
these models first forecast a per-pixel depth map. This
map then serves as a compass, guiding image features to
their rightful 3D coordinates. The subsequent BEV trans-
formation process often follows a bottom-up trajectory, as
depicted in [4]. On the other side of the spectrum are
models leveraging pre-ordained object queries [2], [4] or
lean proposals [44], [45] to collate 2D features in a top-down
manner. While both these paradigms have demonstrated

their prowess on pristine datasets, we expand the horizon
by examining their efficacy on data that deviates from the
norm.

4 BENCHMARK DESIGN

4.1 Dataset Generation

Emerging as our cornerstone is the nuScenes-C benchmark
dataset, curated by introducing corruptions to the validation
set of the renowned nuScenes dataset [1]. Given nuScenes’
widespread application in modern BEV models, it stands
as a fitting choice. Encompassing a vast expanse of eight
distinct corruptions, our dataset mirrors challenges posed
by external environmental elements, sensor-induced distor-
tions, and our innovative temporal corruptions.

Mirroring the structure set by [40], we tier each corrup-
tion type across three intensities: easy, moderate, and hard.
Striking a judicious balance, these severity levels ensure
that while challenges are present, they do not entirely oblit-
erate performance, thereby maintaining the relevance and
integrity of our findings. Moreover, we infuse variability
within each severity tier, bolstering the diversity of the
dataset. Comprehensively, our benchmark consists of a stag-
gering 866736 images, each with a resolution of 1600 x 900
pixels.

We also factor in scenarios simulating complete sensor
blackouts in our camera-LiDAR fusion algorithms. While
simulating the camera’s absence, every pixel in the multi-
view camera input is nullified. To emulate the lack of LIDAR
readings, only the data points within a [—45,45] degree
frontal field of view are retained, jettisoning the rest. Such a
design choice is rooted in our observations that multi-modal
trained models crumble when LiDAR readings are entirely
absent.
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TABLE 2
BEV model calibration. Pretrain: model initialized from pretrained FCOS3D [6] checkpoint; Temporal: model utilizes temporal information; Depth:
model with explicit depth estimation branch used in the pipeline; CBGS: model uses the class-balanced group-sampling training strategy [36].
Bold: Best in the category. Underline: Second best in the category.

Model | Pretrain Temporal Depth CBGS | Backbone | BEV Encoder | Image Size | NDS+ mCE (%)) mRR (%)
DETR3D [4] J ResNet Attention 1600 x 900 | 0.4224 100.00 70.77
DETR3Dcpes [4] v v ResNet Attention 1600 x 900 | 0.4341 99.21 70.02
BEVFormer (small) [2] v v ResNet Attention 1280 x 720 | 0.4787 101.23 59.07
BEVFormer-S (small) [2] v ResNet Attention 1280 x 720 | 0.2622 114.43 76.87
BEVFormer (base) [2] v v ResNet Attention 1600 x 900 | 0.5174 97.97 60.40
BEVFormer-S (base) [2] v ResNet Attention 1600 x 900 | 0.4129 101.87 69.33
PETR (r50) [5] ResNet Attention 1408 x 512 | 0.3665 111.01 61.26
PETR (vov) [5] v VoVNet-V2 Attention 1600 x 640 | 0.4550 100.69 65.03
ORA3D [42] 7 ResNet Attention 1600 x 900 | 0.4436 99.17 68.63
PolarFormer (r101) [43] v ResNet Attention 1600 x 900 | 0.4602 96.06 70.88
PolarFormer (vov) [43] v VoVNet-V2 Attention 1600 x 900 | 0.4558 98.75 67.51
SRCN3D (r101) [44] v ResNet CNN + Attn. | 1600 x 900 | 0.4286 99.67 70.23
SRCN3D (vov) [44] Y VoVNet-V2 | CNN + Attn. | 1600 x 900 | 0.4205 102.04 67.95
Sparse4D (r101) [45] v v ResNet CNN + Attn. | 1600 x 640 | 0.5438 100.01 55.04
BEVDet (r50) [3] g v ResNet CNN 704 x 256 | 0.3770 115.12 51.83
BEVDet (r101) [3] v v ResNet CNN 704 x 256 | 0.3877 113.68 53.12
BEVDet (r101) [3] v % v ResNet CNN 704 x 256 | 0.3780 112.80 56.35
BEVDet (tiny) [3] v v SwinTrans CNN 704 x 256 0.4037 116.48 46.26
BEVDepth (r50) [16] v v ResNet CNN 704 x 256 | 0.4058 110.02 56.82
BEVerse (swin-t) [41] v v v SwinTrans CNN 704 x 256 0.4665 110.67 48.60
BEVerse-S (swin-t) [41] v v SwinTrans CNN 704 x 256 | 0.1603 137.25 28.24
BEVerse (swin-s) [41] v v v SwinTrans CNN 1408 x 512 | 0.4951 117.82 49.57
BEVerse-S (swin-s) [41] v v SwinTrans CNN 1408 x 512 | 0.2682 132.13 29.54
SOLOFusion (short) [55] v v ResNet CNN 704 x 256 | 0.3907 108.68 61.45
SOLOFusion (long) [55] v v ResNet CNN 704 x 256 | 0.4850 97.99 64.42
SOLOFusion (fusion) [55] v v v ResNet CNN 704 x 256 | 0.5381 92.86 64.53

4.2 Natural Corruptions

A visual guide to our corruption taxonomy is presented in
Figure 1. Broadly, we focus on three corruption categories.
First, those induced by external environmental dynamics,
such as varying illumination or meteorological extremes, are
simulated via Brightness, Dark, Fog, and Snow. Considering
the bulk of training data is captured under relatively benign
conditions, testing models under these extremes is crucial.

Secondly, sensor-driven distortions can corrupt collected
imagery. High-speed motion may induce blur, or memory
conservation tactics might compel image quantization. To
mirror these real-world challenges, we have integrated Mo-
tion Blur and Color Quantization.

Lastly, we tread into uncharted territories by simulating
camera malfunctions, where entire image sets or random
frames are omitted due to hardware issues. This is captured
by our novel Camera Crash and Frame Lost corruptions. The
intricacies of these processes are visually broken down in
Figure 1. We visualize the pixel histogram analysis on our
synthesized images, as shown in Figure 2. A notable obser-
vation was that the Motion Blur corruption, while inducing
minimal pixel distribution shifts, still caused a significant
performance dip. Additional experimental findings and re-
sults are discussed in detail in Section 5.

4.3 Robustness Metrics

We follow the official nuScenes metric [1] to calculate robust-
ness metrics on the nuScenes-C dataset. We report nuScenes
Detection Score (NDS) and mean Average Precision (mAP),
along with mean Average Translation Error (mATE), mean
Average Scale Error (mASE), mean Average Orientation
Error (mAOE), mean Average Velocity Error (mAVE) and
mean Average Attribute Error (mAAE).

To better compare the robustness among different BEV
detectors, we introduce two new metrics inspired by [40]
based on NDS. The first metric is the mean corruption error
(mCE), which is applied to measure the relative robustness of
candidate models compared to the baseline model:

3
CE; = Zl:l(l - NDS)i,l

N
1
= L mCE=-—Y CE, (1
Yooy (1 — NDSpFeine) N ; W

where ¢ denotes the corruption type and ! is the severity
level; N denotes the number of corruption types in our
benchmark. To compare the performance discrepancy between
nuScenes-C and the standard nuScenes dataset, we define a
simple mean resilience rate (mRR) metric, which is calcu-
lated across three severity levels as follows:

RRi - )
3 X NDSclean

N
1
mRR = Z RR; . )
=1
In our benchmark, we report both metrics for each
candidate model and base our analyses on these.

5 BENCHMARK EXPERIMENTS
5.1 Experimental Setup

In our study, we use the official model configurations and
public checkpoints provided by open-sourced codebases,
whenever applicable; we also train additional model vari-
ants with minimal modifications to conduct experiments
under controlled settings. To facilitate access to all model
checkpoints and configurations, we have compiled a “model
200", which can be accessed through our repository’.

1.Model zoo is publicly accessible at: https://github.com/
Daniel-xsy/RoboBEV /blob/master/zoo/README.md.
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baseline. Yellow : Worst in the row if decline upon baseline. t: distinguish pre-training version BEVDet.

TABLE 3
The Corruption Error (CE) of each BEV detector in our RoboBEV benchmark. Bold: Best in the category. Blue : Best in the row if improve upon

Model | NDS{ | mCE(%)/| | Camera Frame Quant Motion Bright Dark Fog Snow
DETR3D [4] ‘ 0.4224 ‘ 100.00 ‘ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DETR3Dcpes [4] 0.4341 99.21 98.15 98.90 99.15 101.62 97.47 100.28 98.23 99.85
BEVFormer (small) [2] 0.4787 102.40 101.23 101.96 98.56 101.24 104.35 105.17 105.40 101.29
BEVFormer (base) [2] 0.5174 97.97 95.87 94.42 95.13 99.54 96.97 103.76 97.42 100.69
PETR (150) [5] 0.3665 111.01 107.55 105.92 110.33 104.93 119.36 116.84 117.02 106.13
PETR (vov) [5] 0.4550 100.69 99.09 97.46 103.06 102.33 102.40 106.67 103.43 91.11
ORA3D [42] 0.4436 99.17 97.26 98.03 97.32 100.19 98.78 102.40 99.23 100.19
PolarFormer (r101) [43] 0.4602 96.06 96.16 97.24 95.13 92.37 94.96 103.22 94.25 95.17
PolarFormer (vov) [43] 0.4558 98.75 96.13 97.20 101.48 104.32 95.37 104.78 97.55 93.14
SRCN3D (r101) [44] 0.4286 99.67 98.77 98.96 97.93 100.71 98.80 102.72 99.54 99.91
SRCN3D (vov) [44] 0.4205 102.04 99.78 100.34 105.13 107.06 101.93 107.10 102.27 92.75
Sparse4D (r101) [45] 0.5438 100.01 99.80 99.91 98.05 102.00 100.30 103.83 100.46 95.72
BEVDet (r50) [3] 0.3770 115.12 105.22 109.19 111.27 108.18 123.96 123.34 123.83 115.93
BEVDet (tiny) [3] 0.4037 116.48 103.50 106.61 113.18 107.26 130.19 131.83 124.01 115.25
BEVDet (r101) [3] 0.3877 113.68 103.32 107.29 109.25 105.40 124.14 123.12 123.28 113.64
BEVDet (r101t) [3] 0.3780 112.80 105.84 108.68 101.99 100.97 123.39 119.31 130.21 112.04
BEVDepth (r50) [16] 0.4058 110.02 103.09 106.26 106.24 102.02 118.72 114.26 116.57 112.98
BEVerse (swin-t) [41] 0.4665 110.67 95.49 94.15 108.46 100.19 122.44 130.40 118.58 115.69
BEVerse (swin-s) [41] 0.4951 107.82 92.93 101.61 105.42 100.40 110.14 123.12 117.46 111.48
SOLOFusion (short) [55] 0.3907 108.68 104.45 105.53 105.47 100.79 117.27 110.44 115.01 110.47
SOLOFusion (long) [55] 0.4850 97.99 95.80 101.54 93.83 89.11 100.00 99.61 98.70 105.35
SOLOFusion (fusion) [55] 0.5381 92.86 86.74 88.37 87.09 86.63 94.55 102.22 90.67 106.64
mRR ° 0.005
07
0.004
0.6
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0.4
0.002
03 ¢ [} Bright.
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(a) mCE vs. NDS

(b) mRR vs. NDS

(c) Depth estimation error vs. RR.

Fig. 3. (a): The mCE metric shows a linear relationship with “clean” performance while (b): the mRR metric confronts the risk of decreasing. (c): We
observe strong correlations where large depth estimation errors under Snow and Dark tend to cause drastic performance drops.

We re-implemented several models, including BEVDet
(r101) [3], PolarFormer (vov) [43], and SRCN3D (vov) [44],
tailored to our investigative requirements. For BEVDet
(r101), in the pursuit of fairness, we chose to preserve the
input resolution consistent with BEVDet (r50). This deci-
sion, while producing results slightly lower than the official
documentation [3], was a deliberate effort to emphasize
our study’s robustness metrics over purely optimizing for
performance on the nuScenes dataset [1]. For the original
versions of both PolarFormer (vov) and SRCN3D (vov), the
models were initialized using checkpoints from DD3D [95],
which had previously trained on the nuScenes trainval set.
However, this method inadvertently caused information
leakage, considering the nuScenes-C dataset originates from
the nuScenes validation set. To mitigate this and ensure
fair comparisons, we re-implemented the two models, ini-
tiating them via the FCOS3D [6] model, without further
alterations. Specifically, the VoVNet-V2 iterations [53] of the
FCOS3D models were first trained for depth estimation on
the DDAD15M dataset [54] and then underwent fine-tuning
on the nuScenes training set.

Furthermore, for a comprehensive overview, metrics for
each corruption type were deduced by averaging results
across all three severity levels. In our study, DETR3D [4] was

designated as the baseline for the mCE metric. Our research
methodology and the corresponding code were constructed
atop the MMDetection3D codebase [31].

5.2 Camera Only Benchmarking Results

We undertook an exhaustive benchmark analysis of 30
contemporary BEV models on the nuScenes-C dataset. The
primary outcomes of our investigations are encapsulated in
Table 2. Our analysis revealed that all models manifest a
decline in performance across the corrupted dataset.

5.2.1 3D Object Detection

A notable trend emerges when examining the absolute
performances on both the nuScenes-C and its “clean” coun-
terpart. Specifically, BEV detectors exhibiting proficiency on
the standard dataset also tend to showcase commendable
performance when faced with out-of-distribution datasets,
a trend visually represented in Figure 3a. Nevertheless,
delving deeper into these outcomes brings forth a layered
narrative. Detectors, despite parallel performance on the
“clean” dataset, display varied robustness when confronted
with diverse corruption types. To illustrate, while BEVerse
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TABLE 4
Benchmark results of perception tasks including Map Segmentation (MS), Depth Estimation (DE), and Semantic Occupancy Prediction (SOP).

Tasks | Model | Metric | Clean | Camera Frame Quant Motion Bright Dark Fog  Snow

MS \ CVT [18] \ IoU 1t \ 0.348 \ 0.200 0.170 0.294 0.281 0.275 0.200 0.247  0.177

DE \ SurroundDepth [60] \ Abs Rel | \ 0.280 \ 0.485 0.497 0.334 0.338 0.339 0.354 0.320 0.423

sOor TPVFormer [62] mloU 1 0.521 0.274 0.229 0.381 0.386 0.490 0.373 0.466  0.193

SOP SurroundOcc [61] SC IoU 1t 0.314 0.199 0.181 0.258 0.225 0.307 0.248 0.296 0.183
TABLE 5

NDS results of fusion model under different input modalities. Since Fog and Snow can also affect the LiDAR sensors, we do not consider these
two corruptions of the fusion model.

Model | Camera LiDAR | Clean | Camera Frame  Quant Motion  Bright Dark Fog Snow
BEVFusion [56] v 0.4121 0.2777 0.2255 0.2763 0.2788 0.2902 0.1076 0.3041 0.1461
BEVFusion [56] v 0.6928 — — - - - — - —
BEVFusion [56] v v 0.7138 0.6963 0.6931 0.7044 0.6977 0.7018 0.6787 — —
TransFusion [58] v v 0.6887 0.6843 0.6447 0.6819 0.6749 0.6843 0.6663 — —
AutoAlignV2 [59] v v 0.6139 0.5849 0.5832 0.6006 0.5901 0.6076 0.5770 — —
TABLE 6
Benchmark results for complete sensor failure. The models are trained using multi-modal input while tested using single sensor input.
Model | Train | Camera LiDAR | NDS mAP mATE mASE mAOE mAVE mAAE
BEVFusion [56] C v 0.4122 0.3556 0.6677  0.2727 0.5612 0.8954  0.2593
BEVFusion [56] L v 0.6927 0.6468 0.2912 0.2530 0.3142 0.2627 0.1858
BEVFusion [56] C+L v v 0.7138 0.6852 0.2874 0.2539 0.3044 0.2554 0.1874
BEVFusion [56] C+L v 0.3340 (| 0.3798)  0.0789 (] 0.6063)  0.5044 0.3073 0.4999 0.5098 0.2338
BEVFusion [56] C+L v 0.6802 (| 0.0605) 0.6247(, 0.0605) 0.2948 0.2590 0.3137 0.2697 0.1844
TransFusion [58] C+L v v 0.6887 0.6453 0.2995 0.2552 0.3209 0.2765 0.1877
TransFusion [58] C+L v 0.3470 (| 0.3417) 0.0343 (| 0.6110)  0.4087 0.3091 0.4446 0.3104 0.2282
TransFusion [58] C+L v 0.6464 (| 0.0423) 0.5764 (] 0.0689) 0.3171  0.2761 0.3227 0.3124  0.1897
AutoAlignV2 [59] C+L v v 0.6139 0.5649 0.3300 0.2699 0.4226  0.4644 0.1983
AutoAlignV2 [59] C+L v 0.5651 (| 0.0448) 0.4794 (| 0.0855) 0.3463 0.2734 0.4361 0.4894 0.2007

(swin-s) [41] manifests heightened resilience during a Cam-
era Crash, PETR (vov) [5] excels under Snow conditions. Yet,
both falter significantly under Dark settings.

Our investigations further highlight a potential vul-
nerability in resilience rates across various corruptions.
Even though the mCE metric displays a linear correlation
between the nuScenes and nuScenes-C datasets, the mRR
metric elucidates notable disparities among models with
comparable baseline performance. This suggests potential
overfitting of some models to the nuScenes dataset, thereby
compromising their adaptability to the nuScenes-C dataset.
For instance, despite Sparse4D [45] outpacing DETR3D [4]
on the clean” dataset, it falls short in terms of mRR metrics
across all corruption categories. Moreover, DETR3D’s su-
perior performance under Dark conditions contrasts starkly
with BEVerse (swin-t), which, despite a better clean” per-
formance, registers a relative performance of merely 12%
under similar settings. Hence, it is evident that a multi-
faceted assessment of cutting-edge models is imperative for
a holistic evaluation of their capabilities.

To gain deeper insights into model robustness, we dis-
sected BEV algorithms based on components like train-
ing strategies (e.g., pre-training and CBGS [36] resampling
strategy), model architectures (e.g., backbone), and learning
techniques (e.g., temporal cue learning). The consequent
results are detailed in Table 2.

5.2.2 Other Perception Tasks

Our inquiry also extended to associated tasks, including
BEV-centric map segmentation, depth estimation, and oc-
cupancy prediction, with outcomes presented in Table 4.
Adhering to setting 1 from [18], we reported the Intersec-
tion over Union (IoU) for vehicle map-view segmentation
results. For depth estimation, we employed the Absolute
Relative Difference (Abs Rel) score, and for semantic occu-
pancy prediction, we used the mean Intersection over Union
(mloU). For comprehensive metric definitions, readers can
consult the original publications [18], [60], [61], [62]. These
results, spanning diverse perception tasks, offer an enriched
perspective on BEV model capabilities and constraints.

It is worth noting that the performance of numerous
BEV-centric perception models takes a hit under specific
corruptions like Dark and Snow. This exposes a prevalent
susceptibility across BEV models to such corruptions, com-
promising their reliability in real-world scenarios.

5.3 Camera-LiDAR Fusion
5.3.1

We studied scenarios where cameras are impaired while
LiDAR operates optimally, a frequent occurrence in real-
world conditions. For instance, LIDAR point cloud capture
remains largely unhampered by lighting variations, whereas

Camera Sensor Corruption
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TABLE 7
The Resilience Rate (RR) of each BEV detector in our RoboBEV benchmark. Bold: best within the category. Blue : Best across category. t:
distinguish pre-training version BEVDet.

Model | NDS | mRR (%)t | Camera Frame Quant Motion Bright Dark Fog Snow

DETR3D [4] 0.4224 70.77 67.68 61.65 75.21 63.00 94.74 65.96 92.61 45.29
DETR3Dcpes [4] 0.4341 70.02 68.90 61.85 74.52 58.56 95.69 63.72 92.61 44.34
BEVFormer (small) [2] 0.4787 59.07 57.89 51.37 68.41 53.69 78.15 50.41 74.85 37.79
BEVFormer (base) [2] 0.5174 60.40 60.96 58.31 67.82 52.09 80.87 48.61 78.64 35.89
PETR (r50) [5] 0.3665 61.26 63.30 59.10 67.45 62.73 77.52 42.86 78.47 38.66

PETR (vov) [5] 0.4550 65.03 64.26 61.36 65.23 54.73 84.79 50.66 81.38 57.85

ORA3D [42] 0.4436 68.63 68.87 61.99 75.74 59.67 91.86 58.90 89.25 42.79
PolarFormer (r101) [43] 0.4602 70.88 68.08 61.02 76.25 69.99 93.52 55.50 92.61 50.07
PolarFormer (vov) [43] 0.4558 67.51 68.78 61.67 67.49 51.43 93.90 53.55 89.10 54.15
SRCNB3D (r101) [44] 0.4286 70.23 68.76 62.55 77.41 60.87 95.05 60.43 91.93 44.80
SRCN3D (vov) [44] 0.4205 67.95 68.37 61.33 67.23 50.96 92.41 54.08 89.75 59.43
Sparse4D(r101) [45] 0.5438 55.04 52.83 48.01 60.87 46.23 73.26 46.16 71.42 41.54
BEVDet (r50) [3] 0.3770 51.83 65.94 51.03 63.87 54.67 68.04 29.23 65.28 16.58
BEVDet (tiny) [3] 0.4037 46.26 64.63 52.39 56.43 52.71 54.27 12.14 60.69 16.84
BEVDet (r101) [3] 0.3877 53.12 67.63 53.26 65.67 58.42 65.88 28.84 64.35 20.89
BEVDet (r1011) [3] 0.3780 56.35 64.60 51.90 80.45 68.52 68.76 36.85 54.84 24.84
BEVDepth (r50) [16] 0.4058 56.82 65.01 52.76 67.79 61.93 70.95 43.30 71.54 21.27
BEVerse (swin-t) [41] 0.4665 48.60 68.19 65.10 55.73 56.74 56.93 12.71 59.61 13.80
BEVerse (swin-s) [41] 0.4951 49.57 67.95 50.19 56.70 53.16 68.55 22.58 57.54 19.89
SOLOFusion (short) [55] 0.3907 61.45 65.04 56.18 7177 66.62 75.92 52.03 76.73 27.28
SOLOFusion (long) [55] 0.4850 64.42 65.13 51.34 74.19 71.34 82.52 58.02 82.29 30.52
SOLOFusion (fusion) [55] 0.5381 64.53 70.73 64.37 75.41 67.68 80.45 48.80 83.26 25.57

camera captures can degrade under limited light. Intention-
ally, we excluded conditions like Snow and Fog, as they
could introduce noise to both camera and LiDAR readings.
Results of these studies are depicted in Table 5

Interestingly, multi-modal fusion models maintain high
performance even when the camera data is compromised.
When provided with pristine LIDAR and degraded camera
inputs, BEVFusion [56] consistently outperforms its LIDAR-
only counterpart, with a notably higher NDS score of 0.6928,
across most types of camera corruptions, except Dark. This
affirms the efficacy of using LiDAR data even when the
camera data is suboptimal.

However, there are circumstances where corrupted cam-
era inputs adversely affect the model’s performance. For
example, under conditions such as Camera Crash and Motion
Blur, the benefits of incorporating camera features into the
model are marginal. Moreover, in the presence of Dark
corruption, corrupted camera features not only fail to pro-
vide useful information but also diminish the efficacy of
LiDAR features, leading to a performance drop from an
NDS score of 0.6928 to 0.6787. As a result, enhancing
the robustness of multi-modal fusion models against input
corruption emerges as a crucial avenue for future research.

5.3.2 Complete Sensor Failure

Multi-modal fusion models are typically trained using data
from both camera and LiDAR sensors. However, the de-
ployed model must function adequately even if one of these
sensors fails. We evaluate the performance of our multi-
modal model using input from only a single modality, with
results presented in Table 6. When simulating camera fail-
ure, all pixel values are set to zero. For LiDAR sensor failure,
we discovered that no model could perform adequately
when all point data are absent (i.e., the NDS falls to zero).
Hence, we retain only the points within a [—45, 45] degree
range in front of the vehicle and discard all others.
Interestingly, our findings indicate that multi-modal
models are disproportionately reliant on LiDAR input. In

scenarios where LiDAR data is missing, the mAP metrics
for BEVFusion [56] and Transfusion [58] drop by 89% and
95%, respectively. In contrast, the absence of image data
leads to a much milder decline in performance. This phe-
nomenon underscores that, during the training phase, point
cloud features may disproportionately influence the model,
thereby asserting dominance over image-based features in
perception tasks.

Such a dependence on LiDAR data introduces a signifi-
cant vulnerability to multi-modal perception models, partic-
ularly because LiDAR sensors are prone to data corruption
under adverse weather conditions such as rain, snow, and
fog. These observations necessitate further research focused
on enhancing the robustness of multi-modal perception
systems, especially when one sensory modality is entirely
absent.

5.4 Validity Assessment

Since the corruption images are synthesized digitally, it is
important to study how close they are compared to real-
world corruption. To study the validity of synthesized im-
ages, we conducted two experiments, including the pixel
distribution study and corruption-augmented training.

5.4.1 Pixel Distribution

Assuming that a corruption simulation is realistic enough
to reflect real-world situations, the distribution of a cor-
rupted “clean” set should be similar to that of the real-
world corruption set. We validate this using ACDC [99],
nuScenes [1], Cityscapes [101], and Foggy-Cityscapes [100],
since these datasets contain real-world corruption data and
clean data collected by the same sensor types from the same
physical locations. We simulate corruptions using “clean”
images and compare the distribution patterns with their
corresponding real-world corrupted data. We do this to
ensure that there is no extra distribution shift from aspects
like sensor difference (e.g. FOVs and resolutions) and loca-
tion discrepancy (e.g. environmental and semantic changes).
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Fig. 4. The left two columns illustrate the appearances and pixel distribution patterns observed in genuine real-world corrupted data. The right five
columns represent corresponding synthetic corruptions under different severity levels, which are of high fidelity compared to real-world data.

TABLE 8
Validity study for using corruption augmentation to improve model cross-domain robustness.

Model | Training Set Testing Set  Corrupt Aug | NDS mAP mATE mASE mAOE mAVE mAAE
DETR [4] | nuScenes train  nuScenes val 0.4224 0.3468 0.7647 0.2678  0.3917 0.8754  0.2108
DETR [4] | nuScenes train  nuScenes val v 0.4242 (1 0.0018) 0.3511 0.7655 0.2736  0.4130 0.8487 0.2119

FCOS3D [6] day train day val 0.3867 0.3045 0.7651 0.2576  0.5001  1.2102  0.1321
FCOS3D [6] day train day val v 0.3883 (1 0.0196) 0.3073 0.7630 0.2581 0.5043 1.1782  0.1286
FCOS3D [6] day train night val 0.0854 0.0162 1.0434 0.6431 0.8241 1.8505 0.7597
FCOS3D [6] day train night val v 0.1245 (1 0.0391) 0.0265 1.0419 0.4658 0.8145 2.2727 0.6067
FCOS3D [6] dry train dry val 0.3846 0.2970 0.7744 0.2541 0.4721 1.3199 0.1380
FCOS3D [6] dry train dry val v 0.3854 0.2992 0.7654 0.2582 0.4824 1.3334 0.1361
FCOS3D [6] dry train rain val 0.3203 0.2151 0.8994 0.2856  0.5253 1.7129  0.1619
FCOS3D [6] dry train rain val v 0.3302 (1 0.0099) 0.2266 0.8595 0.2719  0.5559  1.5697  0.1439

As illustrated in Figure 4, the pixel distributions of our
synthesized images exhibit a high degree of resemblance
to those of real-world data, thereby affirming the dataset’s
validity from a pixel statistical perspective.

5.4.2 Corruption-augmented Training

Assuming that a corruption simulation is realistic enough to
reflect real-world situations, a corruption-augmented model
should achieve better generalizability than the “clean”
model when tested on real-world corruption datasets. Also,
the corruption-augmented model should also show better
performance on the clean dataset. We validate this using
nuScenes, nuScenes-Night, and nuScenes-Rain. We adopt
FCOS3D as the baseline and train the model with cor-
ruption augmentation. For nuScenes-Night and nuScenes-
Rain, we train the model on Day-train and Dry-train split
and evaluate on Day-val, Night-val, Dry-val, and Rain-
val split. The results can be seen in Table 8. We observe
that using synthesized images as the data augmentation

strategy successfully improves the cross-domain robustness.
Specifically, in day-to-night domain transitions, we observe
a significant performance drop from 0.3867 to 0.0854 in
the baseline model due to the large domain gap. However,
when trained with corruption augmentation, the model’s
cross-domain performance improves by 45.8%, thereby val-
idating the validity of our synthesized images.

6 ANALYSIS AND DISCUSSION
6.1 Depth Estimation

- Depth-free BEV transformations show better robustness. Our
analysis reveals that depth-based approaches suffer from
severe performance degradation when exposed to corrupted
images as shown in Figure 6¢ and 6d. Moreover, we un-
dertake a comparative study to evaluate the intermediate
depth estimation results of BEVDepth [16] under corrup-
tions. To this end, we compute the mean square error (MSE)
between “clean” inputs and corrupted inputs. Our findings



JOURNAL OF IATEX CLASS FILES, VOL. 16, NO. 8, OCTOBER 2023

Clean Dark

Bright

Motion Blur Color Quant

mCE
1.15

1.10 \

1.05
L]

e
1.00 Pretrain .
: e FCOS3D®® o
°

0.95 » Random
e DETR3D

0.90

NDS 0.40 0.45 0.50 NDS

(b) Pretrain - mRR

0.40 0.45 0.50
(a) Pretrain - mCE

mCE mRR

115 e _ ° 0.70 % ©
110 ©® \ 065
) ° .
1.05 0.60 -
o )
1.00 s s 055
Depth
095 © Depth-estimation-free == 0.50 \
Depth-estimation-based .
0.90 ‘
0.40 045 050  NDS 0.40 045 050  NDS

(c) Depth - mCE (d) Depth - mRR
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Fig. 7. ResNet vs. VoVNet-V2. Since the two versions have similar
“clean” performances, we compare the absolute corruption error (the
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Fig. 8. ResNet vs. SwinTransformer. Since the models have different
“clean” performances, we compare the relative resilience rate (the
higher the better).

indicate an explicit correlation between vulnerability and
depth estimation error, as presented in Figure 3c. Specifi-
cally, Snow and Dark corruptions significantly affect accurate
depth estimation, leading to the largest performance drop.
These results provide further support for our conclusion
that the performance of depth-based approaches can suffer
significantly if the depth estimation is not accurate enough.
The depth estimation results under corruptions can be seen
in Figure 5.

6.2 Pre-Training

- Pre-training improves robustness across a wide range of seman-
tic corruptions while does not help with temporal corruptions. The
effectiveness of these strategies for improving model robust-
ness is illustrated in Figure 6a and Figure 6b, where models
that utilize pre-training largely outperform those not. For

RR (%) mBEVDet (r5s0) @BEVDet (r1o1) mBEVDet (r101) pretrain

30

58

) I I I

" I|_|I il
Camera  Frame Quant  Motion Bright Dark Snow

Fig. 9. Resilience rate comparisons of BEVDet [3] with and without pre-
training. The higher the better.

controlled comparison, we re-implement the BEVDet (r101)
model using the FCOS3D checkpoint as initialization. Our
results, presented in Figure 9, show that pre-training can
significantly improve mRR across a wide range of corrup-
tions (except Fog) even if it has lower “clean” NDS (0.3780
vs. 0.3877). Specifically, under Color Quant, Motion Blur,
and Dark corruptions, the mRR metric improves by 22.5%,
17.2%, and 27.8%, respectively. It is worth noting that pre-
training mainly improves most semantic corruptions and
does not improve temporal corruptions. Even though, the
pre-trained BEVDet still largely lags behind those depth-free
counterparts. Therefore, we can conclude that pre-training
together with the depth-free bird’s eye view transformation
provides models with strong robustness.

6.3 Temporal Fusion

- Temporal fusion has the potential to yield better absolute per-
formance under corruptions. Fusing longer temporal information
largely helps with robustness. We are particularly interested in
examining how models utilizing temporal information per-
form under temporal corruptions. We find SOLOFusion [55]
which fuses wider and richer temporal information per-
forms extremely well compared to its short-only and long-
only versions. In terms of Camera Crash, the short-only and
long-only versions have close resilience rate performance
(65.04 vs. 65.13). However, the fusion version improves to
70.73, which is the highest among all the candidate models.
Similarly, the fusion version improves the resilience rate
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by almost 10% compared to the other two versions under
Frame Lost corruption. Moreover, the RR metric of its long-
only version outperforms its short-only counterpart on a
wide range of corruption types, which indicates the great
potential of utilizing longer temporal information.

Surprisingly, we further find that not all models with
temporal fusion exhibit better robustness under Camera
Crash and Frame Lost. The robustness is highly correlated to
how to fuse history frames and how many frames are used,
which emphasizes the importance of evaluating temporal
fusion strategies from wider perspectives. The results can
be seen in Figure 10. Nonetheless, temporal fusion remains
a potential method to enhance temporal robustness since
the models with the lowest Corruption Error (or the highest
Resilience Rate) are consistently those that utilize temporal
information.

6.4 Backbone

- The Swin Transformer is more vulnerable towards the lighting
changings; VoVNet-V2 is more robust against Snow while ResNet
shows better robustness across a wide range of corruptions.
Although ResNet and VoVNet [53] exhibit close standard
performance, ResNet-based detectors exhibit consistently
superior robustness across a wide range of corruptions, as
illustrated in Figure 7.

Conversely, the VoVNet backbone consistently exhibits
better robustness under Snow corruptions. Moreover, Swin
Transformer [35] based BEVDet demonstrates significant
vulnerability towards changes in lighting conditions (e.g.,
Bright and Dark). A clear comparison can be found in
Figure 8.

6.5 Corruption

The relationship between pixel distribution shifts and model
performance degradation is not straightforward. We calculate
the pixel distribution over 300 images sampled from the
nuScenes dataset and visualize the pixel histograms shown
in Figure 2. Interestingly, the Motion Blur causes the least
pixel distribution shifts while causing a relatively large
performance drop. On the other hand, Bright shifts the pixel
distribution to higher values, and Fog makes fine-grained
features more indistinct by shifting the pixel value more
agminated. However, these two corruptions only lead to
the smallest performance gap, which reveals that model
robustness is not simply correlated with pixel distribution.

6.6 Detailed Metrics

- Velocity prediction errors amplify under corruptions, and attri-
bution and scale errors differ across models. While our study
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Fig. 12. Visualization detection results of BEVFormer [2]. From left to right: top: GT, Clean, Motion, Quant; bottom: Bright, Dark, Fog, Snow.

predominantly reports the nuScenes Detection Score (NDS)
metrics, additional insights into model robustness are il-
lustrated in Figure 11. We find that models incorporating
temporal information, such as BEVFormer [2] and BEV-
erse [41], exhibit substantially lower mean Absolute Velocity
Error (mAVE) compared to those that do not. Nonetheless,
even models with temporal fusion are not immune to the
adverse effects of image corruption; specifically, velocity
prediction errors markedly escalate even under mild il-
lumination alterations. Figure 11b and 11f illustrates that
Motion Blur corruption detrimentally influences the velocity
predictions for both BEVFormer and BEVerse, revealing a
significant vulnerability in these models that incorporate
temporal data.

Moreover, a closer examination of attribution and
scale errors reveals considerable heterogeneity across mod-
els. Depth-free models demonstrate a consistent perfor-
mance in these metrics, while depth-based models display
pronounced variability. This observation underscores the
heightened susceptibility of depth-based methods to image
corruptions and emphasizes the need for further research to
enhance their robustness.

7 POTENTIAL LIMITATION

Despite the eight distinct corruptions we introduce, they
still cannot cover all the out-of-distribution contexts in real-
world applications due to their unpredictable complexity.
Additionally, we mainly analyze coarse-grained designs be-
tween models (e.g., depth estimation) since it is considerably
non-trivial to identify the trade-off between fine-grained
network architecture designs.

8 CONCLUSION

In this study, we present the RoboBEV benchmark, crafted by
incorporating a comprehensive set of eight different natural
corruptions to form the nuScenes-C dataset. This benchmark
serves as a rigorous testing ground for evaluating the out-of-
distribution robustness of Bird’s Eye View (BEV) perception
models. Additionally, we extend our analysis to account
for sensor failures in multi-modal perception frameworks,
offering a more holistic view of model robustness. Through
extensive experimentation, we scrutinize various factors
influencing the robustness of BEV perception algorithms.

Our findings elucidate critical vulnerabilities and strengths
across different models and under diverse conditions. By
shedding light on these aspects, we aim to furnish the
research community with invaluable insights that can guide
the development of more robust, future-ready BEV percep-
tion models.
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