

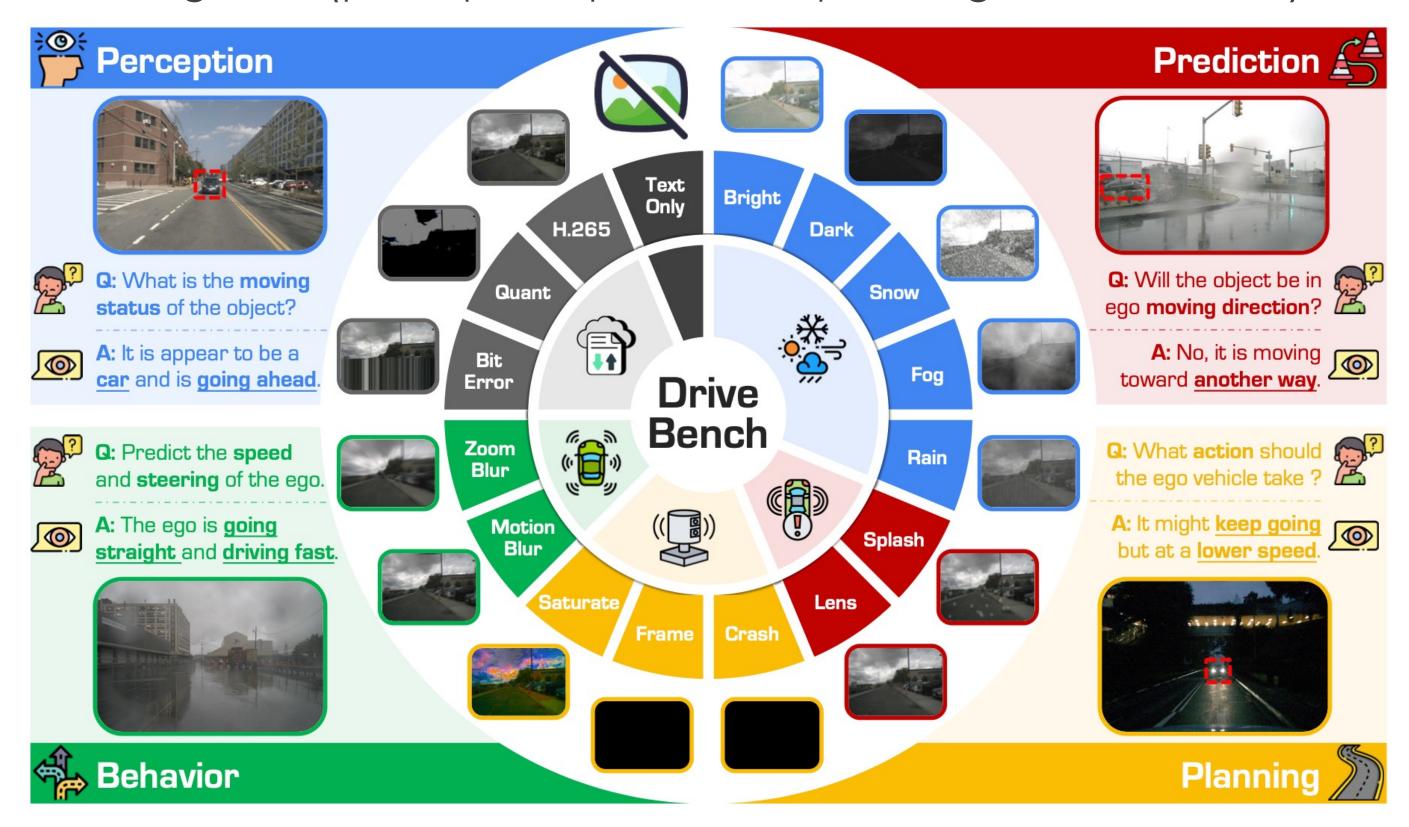
Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data and Metric Perspectives

Shaoyuan Xie¹, Lingdong Kong^{2,3}, Yuhao Dong^{2,4}, Chonghao Sima^{2,5}, Wenwei Zhang², Qi Alfred Chen¹, Ziwei Liu⁴, Liang Pan²

Motivation & Contribution

Benchmark Overview

> DriveBench is a benchmark designed to reveal VLMs' limitations in autonomous driving, It includes 19,200 frames and 20,498 QA pairs under 17 settings (clean, corrupted, and text-only), cover 4 driving tasks (perception, prediction, planning, and behavior).

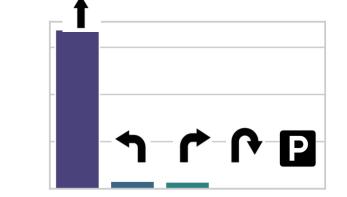


Motivation & Observation

- > VLMs are increasingly applied to different autonomous driving tasks for their common-sense reasoning, offering potential to address rare corner cases beyond data-driven coverage.
- > However, their susceptibility to hallucination raises serious safety concerns, especially in safety-critical driving scenario.
- > DriveBench tackles a critical yet unexplored assumption: "Can existing VLMs provide reliable, visually-grounded explanations?"

Benchmark Construction

> Dataset imbalance is observed across multiple "driving with language" datasets, e.g., DriveLM, BDD-X. We resample the data in our benchmark construction to make it more balanced.



- We developed the main DriveBench based on DriveLM and remove data depends on temporal information, given the context window limitation.
- > We filter the dataset based on GPT-40 results, removing "unreasonable" data for better testing existing VLMs.

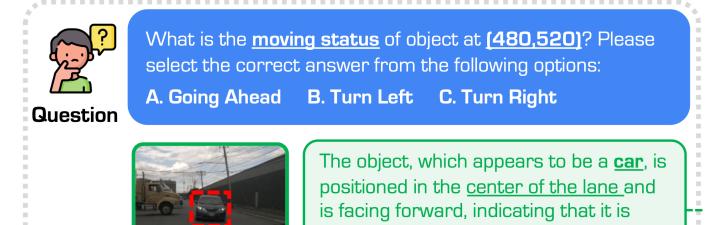
Reliability Check & Evaluation

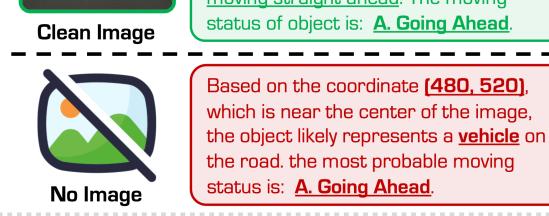
Hallucination with Visual Degradation

> VLMs fabricate answers under visual degradations but show no GPT score degradation under corruption or text-only input.

Tab. GPT score with clean; corrupted; and no visual (<u>Text-Only</u>) input

Method	Size	Туре	Perception		A Prediction			Planning			🖒 Behavior			
			Clean	Corr.	T.O.	Clean	Corr.	T.O.	Clean	Corr.	T.O.	Clean	Corr.	T.O.
P Human	-	-	47.67	38.32	-	-	-	-	-	-	-	69.51	54.09	-
GPT-40 [2]	_	Commercial	35.37	35.25	36.48	51.30	49.94	49.05	75.75	75.36	73.21	45.40	44.33	50.03
LLaVA-1.5 [47]	7 B	Open	23.22	22.95	22.31	22.02	17.54	14.64	29.15	31.51	32.45	13.60	13.62	14.91
LLaVA-1.5 [47]	13 B	Open	23.35	23.37	22.37	36.98	37.78	23.98	34.26	34.99	38.85	32.99	32.43	32.79
LLaVA-NeXT [48]	7 B	Open	24.15	19.62	13.86	35.07	35.89	28.36	45.27	44.36	27.58	48.16	39.44	11.92
InternVL2 [12]	8 B	Open	32.36	32.68	33.60	45.52	37.93	48.89	53.27	55.25	34.56	54.58	40.78	20.14
Phi-3 [1]	$4.2~\mathrm{B}$	Open	22.88	23.93	28.26	40.11	37.27	22.61	60.03	61.31	46.88	45.20	44.57	28.22
Phi-3.5 [1]	$4.2~\mathrm{B}$	Open	27.52	27.51	28.26	45.13	38.21	4.92	31.91	28.36	46.30	37.89	49.13	39.16
Oryx [51]	7 B	Open	17.02	15.97	18.47	48.13	46.63	12.77	53.57	55.76	48.26	33.92	33.81	23.94
Qwen2-VL [71]	7 B	Open	28.99	27.85	35.16	37.89	39.55	37.77	57.04	54.78	41.66	49.07	47.68	54.48
Qwen2-VL [71]	72 B	Open	30.13	26.92	17.70	49.35	43.49	5.57	61.30	63.07	53.35	51.26	49.78	39.46

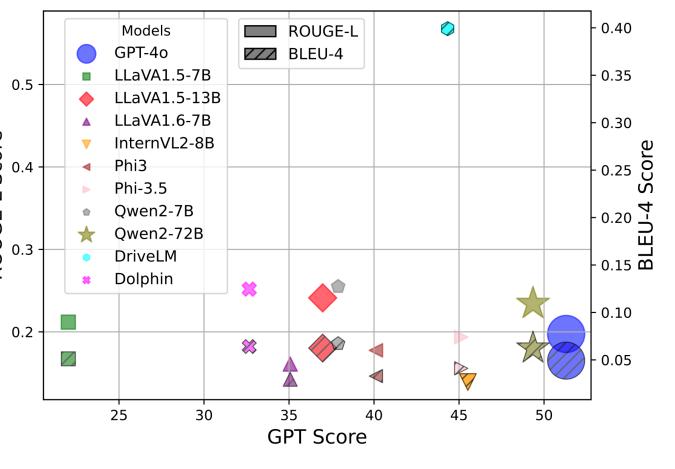




- > We observe that existing driving VLMs can generate answer base on text information and general knowledge learned in training.
- > This raises concerns about their reliability and trustworthiness, as such behaviors are often difficult to detect using existing datasets and evaluation metrics.

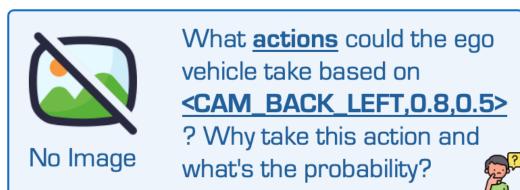
Benchmark Study & Experiments

Comparisons of Evaluation Metrics



- Language metrics (e.g., Rouge-L) fail to reflect semantic similarity and often show uniformly scores.
- GPT scoring is more discriminative, aligning with model performance the standard benchmarks.
- Fine-tuned models tend to "learn" the answer template, leading to a unwanted, misleading sense of performance improvement.

LLM-as-a-Judge



The ego vehicle could take the action of slowing down or stopping. This is because CAM_BACK_LEFT,0.8,0.5> the object at coordinates (0.8, 0.5) in the ? Why take this action and back left camera view is likely a pedestrian what's the probability? or <u>a stationary object on the road</u>..

Total Score: 77 Summary: The predicted answer accurately identifies the need to **slow down or stop** based on the

- > GPT score is more **discriminative** with **more information** provided.
- > Even with these the information, GPT score can also fail to capture nuance when the model is hallucination under text-only scenarios.

Robust Agentic Utilization (RAU)

Corruption Awareness

- > VLMs tends to have the corruption awareness to correctly understand the current visual corruption type.
- > Most VLMs acknowledge cannot answer questions when explicitly include corruption type in prompt.

Tab. Robustness improvement

Method	Input	NDS↑	mAP↑	mCE↓	mRR†
DETR3D [73]	Clean	43.41	34.94	-	-
DETR3D [73]	Corrup.	30.76	19.26	1.22	0.71
$DETR3D_{RAU}$ [73]	Corrup.	34.12	22.72	1.16	0.79
BEVFormer [41]	Clean	51.71	41.63	-	-
BEVFormer [41]	Corrup.	30.64	20.13	1.23	0.59
BEVFormer _{RAU} [41]	Corrup.	35.44	25.07	1.14	0.68

Tab. Corruption accuracy

Method	,	1			↓↑	Avg
GPT-40 [2]	57.20	29.25	44.25	34.25	36.83	40.36
LLaVA-1.5 _{7B} [47]	<u>69.70</u>	26.50	18.83	71.25	10.17	39.29
LLaVA-1.5 _{13B} [47]	61.60	15.50	24.08	79.75	15.50	39.29
LLaVA-NeXT [48]	69.70	48.50	21.83	66.00	11.83	43.57
InternVL2 [12]	59.90	50.75	29.92	68.25	30.00	47.76
Phi-3 [1]	40.00	25.00	16.83	31.25	27.67	28.15
Phi-3.5 [1]	60.60	21.25	25.58	33.00	39.67	36.02
Oryx [51]	53.20	45.00	50.50	72.50	39.67	52.17
Qwen2-VL _{7B} [71]	76.70	37.50	22.83	57.00	35.83	45.97
Qwen2-VL _{72B} [71]	59.80	45.50	52.25	58.25	44.83	<u>52.13</u>
DriveLM [63]	21.20	21.25	9.00	22.25	17.50	18.24
Dolphins [52]	54.30	3.00	9.42	9.25	21.50	19.49

RAU leverages awareness of corruption of driving VLMs to improve performance of some downstream tasks on corrupted visual input (e.g., 3D object detection).